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Abstract—The mechanism of heat transfer at surfaces in fluidized beds is discussed and a variant of the
penetration theory is developed in which the packet theory of heat transfer is modified to allow for,
and describe quantitatively, property variations in the packet in the region of the surface.

Property variations are described in terms of the voidage variations in the vicinity of a constraining
surface which are modelled from simple geometrical considerations.

The model of the heat-transfer process derived here shows good agreement with experimental data
without recourse to any of the semi-empirical approximations that are features of the previous models.

NOMENCLATURE

bed cross-sectional area;
cross-sectional area of solid particles at
point x;

equivalent dimensionless conductivity;
function defined by equation (11);
specific heat;

¢,(x), specific heat of emulsion phase at point x;

9(2),

constant of proportionality;

particle diameter;

surface heat flux;

function of x; »

Kpt/d?, instantaneous Fourier number;
Kk T/d2, time-mean Fourier number;
function defined by equation (10);
heat-transfer coefficient;

H(Z), function defined by equation (12);

thermal conductivity;

thermal conductivity of emulsion phase at
point x;

heat penetration depth;

function defined by equation (13);

hd,/kg, particle Nusselt number;

contact time;

emulsion phase temperature;

volume;

volume of the particle segment—equation
(23);

dimensionless temperature defined by
equation (7);

W(Z), dimensionless emulsion phase temperature

at point Z;

*Present address: Central Electricity Research Labora-

tories, Kelvin Avenue, Leatherhead, Surrey, England.

X, distance from the surface;

Z, x/d,, dimensionless distance from the
surface;

AZ, step size.

Greek symbols

B. solid concentration;

B(x), solid concentration in emulsion phase at
point x;

£, voidage;

e(x), voidage of emulsion phase at point x;

K, thermal diffusivity;

0, specific density;
p(x), specific density of emulsion phase at point x;

T, mean packet residence time.
Subscripts
B, uninfluenced by the constraining surface;
G, gas,
i, instantaneous value at time ¢;
m, time-mean value;

P, particle;
W, wall, heat-transfer surface.

INTRODUCTION

ALTHOUGH many investigations of heat transfer
between fluidized beds and immersed surfaces have
been carried out, the designer of fluidized bed heat-
transfer systems must still resort to approximate
empirical equations in order to estimate the coefficient
of heat transfer. Measurements of heat transfer between
fluidized beds and boundary surfaces have been carried
out by many investigators and extensive experimental
data are available in the literature.
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A number of mathematical models have been pro-
posed for the prediction of heat-transfer coefficients,
the most useful type being based upon transient con-
duction between the particles and the surface.

None of the models give agreement with experi-
mental data, even under closely controlled residence
time conditions unless some empiricism is invoked,
although when coupled with empirical equations, most
models ar® capable of fitting data gathered under wide
ranges of conditions. The model proposed in this paper
has the advantage over the previous models that it can
fit most of the available controlled residence time data
without any a posteriori empirical constant being used.

Nowadays, when considering the mathematical
models, two basic philosophies can be discerned. Both
methods use a two-phase description of the system
but for each approach the characteristics and the
function of the phases are different.

The first approach is to regard the bed as a
fundamental system consisting of a continuous phase
(provided by the fluidizing medium) and a discrete
phase which is provided by the solid particles and
sets out to solve the transient heat-transfer equations
for single particles during their residence at the surface.
The second approach uses the analogy between a
fluidized bed and a liquid. so considers the emulsion
phase to be the continuous phase and the gas bubbles
to be the discrete phase. The transient conduction
equations are solved for a packet of emulsion swept up
to the wall by the bubbles, a stirrer, or by flowing
the particles over the surface. Each of these approaches
has some inherent advantages over the other.

BASIC MODELS, THEIR LIMITATIONS,
REFINEMENTS AND EXTENSION

Single particle models

The simplest model based on this approach was
developed by Botterill and Williams [ 1], who assumed
that an isolated particle surrounded by gas contacts the
heat-transfer surfacefor a certain time, during which the
heat is transferred to it by transient conduction. The
solution was necessarily numerical and the experi-
mental data, gathered from closely controlled residence
time experiments, deviated greatly from the prediction.
This shortcoming was removed by the expedient of
introducing a gas film between the particle and the
surface. With this adjustment good agreement between
predicted and experimental data was possible for short
particle residence times. This is the major limitation
on the use of this type of model, although, even if the
position and residence time of a particle near the
surface were known precisely, there are still mathe-
matical limitations in the basic model. The model will
be accurate only if the heat from the heat-transfer
surface does not penetrate beyond the first layer of
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particles. The depth of heat penetration is given in
reference {2]:

Lyox (kgt)'?

. Ly o (Fo)'/?
p

where Ky is the thermal diffusivity of the emulsion.
Thus, the single particle approach can be expected to
be accurate at low Fourier numbers only. This limita-
tion has been long recognized, and Botterill and Butt
[3] and Gabor [4] have solved the heat diffusion
equations for additional layers of particles. However,
the mathematical modelling of single layers of particles
has limitations and it is doubtful if the extension of the
domain to further layers can be justified physically.

Emulsion phase models

The models based upon the liquid analogy stem from
the work of Mickley and Fairbanks [5]. They consider
a packet of constant voidage emulsion phase to be
swept into contact with the heat-transfer surface for a
period of time. During this time, known as the packet
residence time, the heat is transferred by non-steady
conduction at the surface until the packet is replaced
by a fresh packet. Even assuming that all of the
thermophysical properties of the packet can be deter-
mined accurately, the model still has limitations. Thus,
at the heat transfer surface the packet properties must
differ from those in the bed due to the voidage
variation. For the surface layer effect to be negligible,
the heat penetration depth must be much greater than
the layer of altered thermophysical properties, which is
usually of order one particle diameter. This model
should be accurate for large values of the Fourier
number. At small values, however, the model fails.

Models based on this penetration theory approach
have been considerably refined to extend their validity
to low Fourier numbers. The methods used are to
introduce a time-independent contact resistance at the
bed-surface interface to account for the increased
voidage in the vicinity of the surface [6], or to consider
the packet to have a limited depth (so setting a
boundary constraint) [7].

The concept of a time independent contact resistance
appears to be a good first approximation to the problem
asitenables good curve fitting of the available data [8].
However, the physical reasoning behind it is somewhat
tenuous and its introduction the result of mathematical
expedience [4]. The evaluation of this contact resistance
is based upon empirical considerations which enable a
good data-fit to be obtained.

In conclusion, each of the basic approaches has
limitations; the former approach being reasonable at
low values of the Fourier number, the latter at large
values. Extensions of these asymptotic solutions rely
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upon empirical considerations which somewhat reduce
their theoretical validities. The model developed here
uses the penetration theory on the emulsion phase with
a modification to allow for variable properties in the
region of the surface by introducing the concept of a
property boundary layer.

PROPOSED MODEL FOR SURFACE TO BED
HEAT TRANSFER

Assumptions in the theoretical treatment
The assumptions are similar to those introduced
by Mickley and Fairbanks [5]:

(i) The dense phase has a constant voidage and is
isothermal in the bulk of the bed.

(ii) Packets of dense phase are transferred to the heat-
transfer surface either by bubble induced circula-
tion, stirring or flowing of the solids. The
heat-transfer mechanism is one of transient
conduction during the time of packet residence
at the surface.

(i) The only constraint on the position of particles at
the surface is provided by the surface itself [9],
which influences the local packing and hence alters
the local thermophysical properties.

(iv) The variation of voidage is confined to the plane
normal to the wall.

Formulation of the model

Considering the heat transfer to be in the direction
normal to the wall in the emulsion phase, the semi-
infinite layer approximation can be applied and the
Fourier equation takes the form:

oT 0 oT
; — = k(x) — . 1
p(x)c, (x) = 6x( (x) 6x> ey
With boundary conditions for t > 0, x > 0:
t>0,x=0 —k(x)a_T=fs 2
ax
t=0,x20 T=0 (3)
These equations can be written in dimensionless form
ow orw ow
= H(Z) 5 + L(Z)— 4
5Fo ~ @ gz + L&) 57 @
subject to
ow
Fo>0,Z=0 —=-1/b(Z 5
0 7 /b(Z) &)
Fo=0,Z>0 W=0 (6)

by using the following transformations:
W = Tky/f.d, )
Z =x/d, (8)

Fo = kyt/d; )

9(Z) = p(Z)c, (Z)/(pcy) (10)
b(Z) = k(Z)/ky (11)
H(Z) = b(Z)/9(Z) (12)

L(Z) = db(2) / g(2). (13)

dz

In order to solve equations (4)—(6) the functions defined
in (10)—(13) must be evaluated. These evaluations
require a knowledge of the voidage variation in the
vicinity of the surface.

Voidage variation in the vicinity of a constraining surface

The variation of local voidage of packed beds in the
vicinity of a constraining wall has been investigated by
several workers [9-11]. Using spherical particles the
usual observation is that the voidage variations with
distance from the constraining surface take the form of a
damped oscillation curve, having a minimum voidage
at about one particle radius from the surface. In the
case of fluidized beds the oscillations of the voidage
appear to be damped much more rapidly [11] and the
voidage minimum is shifted further from the constrain-
ing surface. This situation is further exaggerated for
non-spherical particles, the voidage remaining practi-
cally constant after one particle diameter and having a
minimum at 0-75d, from the surface.

Particles at the same distance from the constraining
surface will be influenced by it in the same way.
Hence, the mean voidage of any plane parallel to the
constraining surface is a function of the distance of the
plane from the constraining surface. The area voidage
of these planes is

(14)
where f(x), the solid concentration is given by

AX) 15
B(x) = 4, (15)
A(x) is the solid cross-sectional area at a reference
plane which is situated at a distance x from the
constraining surface. In order to calculate the particle
cross-sectional area at any distance the following
assumption is made.

The particles in the bed can be approximated by
uniform spherical particles having the mean equivalent
diameter of the actual particles without affecting the
voidage distribution within the packet.

It is now postulated that for a bed of uniform
spherical particles, the solid cross-sectional area A(x)
at a reference plane distance x from the surface is
proportional to the cross-sectional area of a cylinder
whose volume and height are identical to those of the
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segment of a spherical particle which can be found
between the reference plane and the surface while
touching the surface (Fig. 4).

When the reference plane is situated beyond one
particle diameter from the surface, the fraction of a
spherical particle in contact with the surface which
can be found between it and the surface is constant,
and equal to the entire particle. Thus, it is implied that
the asymptotic material cross-section is attained at a
distance of one particle diameter from the wall. The
voidage variation can then be calculated

x<d, Ax)x V{x)/x
x>d, Ax)xVyd,

(16)
(17

where V(x) is the volume of that segment of a spherical
particle between the surface and the reference plane and
V, is the particle volume.

Equations (16) and (17) can be rewritten

x<d, Px)=CV(x)/x
x>d, Bix)=CVyd,

(18)
(19)
where C is a constant of proportionality. The r.h.s. of
equation (19) is a constant uninfluenced by the con-

straining surface equal to the material concentration
within the emulsion phase, ;. Hence

CV,jd, = 1—eg = fy. (20)
Then from equations (18) and (19)
x<d, px)=d —ay)dl ) 1)
x V,
x>d, plx)=1-¢g (22)

where V(x), the volume of the segment between the

surface and the plane, is given by:
Vo) = dax?(d, — ) (23)

Equations (21) and (22) can be written in dimension-

less form:
Z<1 (24)

(25)

o2y =1-3(1—¢ex)(Z2—3%2Z%)
Z>1 eZ)y=e¢y

The predicted variation of the voidage for various
emulsion voidages, &g, is plotted in Fig. 1. These
predictions agree well with the experimental data of
[9] and [11].

Equations (24) and (25) can be used to calculate the
variables H(Z) and L(Z).

The functions H(Z) and 1L.(Z)
(i) When the fluidizing medium is a gas, its heat
capacity can be neglected relative to that of the
solids so that

P(Z)cy(Z) = (pcy)p B(Z) (26)
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F1G. 1. Variation of the dense phase voidage in the vicinity
of a flat surface.

and

(Pcp)n = (pcp)p ﬁB (27)

and hence

9(Z) = B(Z)/By. (28)

The effective conductivity of a packet can be
calculated from one of the models available in the
literature. In this work the method proposed by
Kunii and Smith [12] is used and it is assumed
that its validity can be extended into regions of
high voidage [13]. The local effective thermal
conductivity of a packet can be expressed in the
form:

(i)

k(Z) = lk, k¢, e(Z)]. (29)

Using equations (29) and (11), b(Z) can be readily
calculated. However, k(Z) can be more easily
evaluated graphically than using its explicit form
[12]. Figures 2 and 3 show the behaviour of
function b(Z) for various ratios of gas and particles
thermoconductivities and two values of the mean
packet voidage, ¢,

The function H(Z) is then calculated from equa-
tion (12). In order to calculate the function L(Z),
b(Z) must be differentiated, in this work by
numerical differentiation. L(Z) is then calculated
from equation (13).

(i)

THEORETICAL HEAT-TRANSFER COEFFICIENTS

Numerical calculations

Equations (4)—(6) were solved numerically using the
voidage distribution given by equations (24) and (25).
The calculated thermophysical properties vary very
rapidly close to the heat-transfer surface which type
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F1G. 3. Variation of the dimensionless conductivity, b(Z),
with Z for dense phase voidage &5 = 0-50.

of variation lends itself most readily to constant flux
boundary conditions. The physical situation is some-
where between constant wall temperature and constant
wall flux. However, the solutions obtained by either
approach are almost the same {2]. In order to solve
the equations accurately, very small space (and hence
time) increments must be used because of these large
variations close to the surface. The size of increments
needed makes computer time requirements extremely
large.

In order to overcome this complication while not
sacrificing much accuracy, it was assumed that the first
space increment from the surface remained at steady
state so that the situation is as shown in Fig. 4 and
the wall temperature, W(0), can then be calculated as
shown in the Appendix, from,

W, = W(0) = W(AZ) + /;Z

(30)

eq

Surface

b{L M-

b(0)

Particle

AZ z

0
L Az

FiG. 4. Considerations for deriving beq,
used in the numerical calculation.

where,

_ b(AZ)—b(0).
“ 1 PA2)
" b0)

The temperature field in the packet was calculated by a
standard numerical technique [2] until that distance
from the surface at which the dimensionless tempera-
ture, W, became smaller than 107 1°; at this point the
calculation was terminated and restarted for the next
time increment. The space incremental size used was
AZ equals 0-05. The solution thus obtained was checked
for accuracy by halving and quartering the step-size.
This demonstrated both the adequacy of the step-size
and that the simplification [equations(30)and (31)] was
numerically reasonable, leading to a great saving in
computer time while incurring negligible loss of
accuracy.

3y

The instantaneous Nusselt number
An instantaneous Nusselt number can be defined as

— hidp

Nuy;
kg

(32)

where h; is the instantaneous heat-transfer coefficient
which can be expressed,

s .
he= (T (339
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so that,
dpfs
Nu; = —Z%— (34)
kg (T )i
Thus, from equation (7),
1
Nuj= ——. (35)
RRNUA)

Figure 5 shows the variation of the instantaneous
Nusselt number with the Fourier number.

Time-mean Nusselt number
The time-mean heat-transfer coefficient (and hence
time-mean Nusselt number) can be calculated if the
mean residence time and the residence time distribution
functions are known. Thus,
I
By = T (36)
In order to evaluate (T;,),, a residence time distribution
function must be used. The simplest form for fluidized
beds appears to be the uniform residence time
distribution function [6,7] although many other forms
can be used [14,15]. The effect of the distribution
function selected is not numerically large [7, 19], so that

(T = ljr (Tyy)dt (37)

T Jo

where 7 is the periodic time of renewal of packets on
the heat-transfer surface. The mean Nusselt number is

1
Nu,, = 38
= W G%)
where
1 Fom
(Wy)m = FT,,, L (Wy); dFo. (39)

The theoretical predictions can be compared with
experimental results obtained under closely controlled
conditions such as in flowing or in stirred beds.
Figure 6 shows the variation of the time-mean Nusselt
number with the time-mean Fourier number.

COMPARISON WITH EXPERIMENTAL DATA

The discrepancies amongst the available data,
measured in freely bubbling beds under apparently
identical conditions of fluidization, can be of several
orders of magnitude [16], reflecting the many para-
meters which can influence fluidized bed heat-transfer
rates. Hence, in order to test the various theories or
develop new models, simplified systems in which the
bed behaviour is closely controlled are used. The
experimental systems can be classified as follows:

(i) The low thermal capacity probe

In this technique a small, low heat capacity heating
foil is used to measure both heat-transfer coefficients
and packet residence times in freely bubbling beds [17].
While this technique is very useful, the results obtained
are subject to errors because the surface temperature
and flux vary during any test and further, the packet
voidage at the surface is distorted by the passing
bubbles.

(i) Stirred beds

The heat-transfer probe is moved through the bed
on a stirrer [18] or the bed is stirred past a heat-
transfer probe [1] in order to effect residence time
control. However, this technique involves two question-
able assumptions. Firstly, particle replacement over the
entire surface is complete and secondly, the bed
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structure is unaffected by the stirring. Each of these
assumptions has been shown to be of limited validity

[4]-

(i) Flowing packed beds

Accordingto the two-phase theory of fluidization the
dense phase of a fluidized bed is considered to be
under approximately incipiently fluidized conditions.
The incipiently fluidized bed has many of the charac-
teristics of a packed bed [20] so that the dense
phase can be simulated for many purposes by a packed
bed. Many data have been gathered for packed beds
flowing over heat-transfer surfaces. The main experi-
mental limitation of this technique is that particle
rotation has been observed under some conditions [21].

(iv) Transient response

In this technique a heat-transfer probe of known
heat capacity and initial temperature is submerged into
an incipiently fluidized or packed bed [22]. The
variation of heat-transfer coefficient with time, obtained
from the temperature response of the probe, is ana-
logous to the response of a packet of particles at a
heat-transfer surface in a fluidized bed over the same
time interval. This technique suffers from the same
disadvantage as the first method in that both flux and
temperature vary at the surface. However, the packing
at the surface is not in this case disturbed by passing
bubbles.

Experimental data, obtained under all of the above
conditions are available in the literature. In comparing

these data with the prediction of this work it was
sometimes necessary to use assumed values for the
dense phase voidage to calculate the required packet
properties. The voidage then used was 0-41 and the
conductivity was calculated as outlined earlier. The
properties of the particles and gases used in this
comparison are set out in Table 1.

Table 1. Physical properties at 24°C

k Cp P
(WmK) (J/kgK) (kg/m?)
Air 0026 1008 119
Helium 0-148 5200 0-165
Freon 12 0-0097 650 514
CcO, 0016 850 179
Glass 0-850 765 2700
Copper 380 385 8930
Steel 45 480 7800
Silica sand 1-87 860 2600
Slag [18] 0-59 752 2720

Instantaneous Nusselt numbers

The prediction of the present theory is compared
with the results of Antonishin et al. [22] in Fig. 7.
The asymptotic Mickley—Fairbanks solution, assuming
a constant flux boundary condition, and given by
Carslaw and Jaeger [2] as

Nu; = \?Fo-”z (40)

is also included.
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Time-mean Nusselt numbers

The experimental results of a number of workers are
compared with the present theory in Figs. 8-11. Again,
the Mickley-Fairbanks solutions calculated from equa-
tions (36), (37) and (40) as

3/
Num: #FO,;”Z (41)

are included.

DISCUSSION

As the present model involves the use of the experi-
mental results of several workers, for example in
calculating voidage variations near surfaces or packet
properties, it is very satisfying to see the very good
agreement between the present theory and the
controlled residence time data available in the litera-
ture. It is significant that the best agreement between
theory and experiment was obtained using the results
from experiments conducted under very carefully con-
trolled conditions with materials of well known pro-
perties in the emulsion phase. This suggests that where
the disagreement is most pronounced, the true experi-
mental conditions may not have been measured. These
errors may be due to:

(i) The stirrer not being 100 per cent efficient.

(i) In flowing packed bed experiments some particle
rotation could occur.

The voidage was not reported for many of the
experiments and the value of 041 may not be
correct.

The calculated thermal conductivities of packets
is probably the biggest single source of error. This
error is indicated when the results of a particular
study fall systematically either above or below the
theoretical line.

(iii)

(iv)
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W, glass ballotini-helium [28]; O, glass ballotini—carbon dioxide [25]; ®, steel shot-helium [24]; O, quartz
sand-air [30]; W, slag spheres—air [18].

(v) In the case of fluidized metals a further complica-
tion is that an oxidized microlayer on the surface
of the particle would considerably effect the con-
ductivity of a packet.

These effects could be eliminated by calculating the
effective conductivity of the emulsion phase from heat-
transfer results with long packet residence times, using
Mickley and Fairbanks asymptotic solution. However,
the agreement obtained without using this method
seems to make such a refinement unnecessary.

None of the previous models of heat transfer in
fluidized beds have been capable of producing accept-
able agreement with the experimental data over the full
range of data without the introduction of some form
of semi-empirical approximation. While these approxi-
mations, such as a gas-film, a region of reduced
voidage or a finite penetration depth, have obvious
physical significance, they are all ad hoc expedients
rather than solutions to the real problem of behaviour
close to a surface. The model developed here uses no
assumed film properties and is analogous to the
variable wall properties approach long used in single
phase heat transfer, such as the Sieder—Tate correction
for viscosity variations [23].

Voidage variations are confined to a distance of one
particle diameter from the surface and can be described
accurately from simple geometrical considerations.

Figures 7-11 show that the model developed here
gives a good agreement with experimental data where
conduction is the predominant mode of heat transfer.
In principal, this model could be extended to more
complicated mixed-mode heat-transfer situations, for
example to high pressure systems where gas convective
transfer is significant [21].

The voidage variation in the vicinity of a surface

could probably be described by a more accurate
expression than that developed here and the numerical
approximation improved. However, it is doubtful
whether the increase in precision of the theoretical
solution would be justified in terms of the experi-
mental limitations.

The main disadvantage of all of these theoretical
models is that they cannot be readily applied to freely
bubbling beds where the actual dense phase motion
cannot yet be described adequately in any quantitative
manner.

CONCLUSIONS

1. The model derived here for heat transfer between
a surface and a fluidized bed agrees well with all
controlled residence time data available in the
literature.

2. Thepacket theory of heat transfer is modified to take
account of the presence of the surface and its effect
on the local voidage by introducing a physically
justified property boundary layer.

3. The voidage variation near a surface can be
described from simple geometrical considerations,
and the equation derived agrees well with the
available data.

4. The model proposed, using the derived property
boundary layer, requires no physically unjustified
concepts in order to produce agreement with experi-
mental data.
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APPENDIX

Constant flux conditions at the surface of the heat-transfer
probe are given by equation (5) as
W

=, =~ 1/b0)

(A1)
Equation (A.1)is valid only at the suiface of the heat-transfer
probe. If a finite difference numerical method is used with a
finite material slab, equation (A.1) is not applicable and
must be modified to

oW _

oz = b

(A2)
where beq is the equivalent thermal conductivity (dimension-
less) of the first slab (Fig. 4).
The temperature at the wall can be calculated from the
temperature at point AZ as [2]
wo) = 3 + waz).
eq

(A3)

Equation (A.3) is based on the assumption that the first slab
of material remains at steady state throughout the heating
process. The same assumption can be applied on a material
slab of variable conductivity. This is done by solving

d dw
iz (b(Z)E =0 (A4)
subject to
Z=0 —b(O)ﬂV =1 (A.S)
dz
Z=AZ W=W(AZ). (A.6)

It is further assumed that, because the slab thickness is small
compared with the particle diameter, the variation of dimen-
sionless thermal conductivity can be approximated by a
linear function satisfying the following conditions

Z=0 b(Z)=>50)
Z=AZ b(Z)=b(AZ).

(A7)
(A.8)
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The function b(Z) can then be approximated in the first  from which the wall temperature W(0) can be calculated as

slab by
- b(AZ)-b(0) W) = WazZ) + —2 28Dy
b(Z)—b(0)+Tz. (A.9) () (AZ) HAZ)—b0) n b0) (A.11)
The solution of equation (A.4) with b(Z) given by equation Flnally, comparing equations (A.3) and (A.11) the expressxon
(A9)is for the equivalent conductivity of the first slab is given as
L oAz . baZ)=b(0) A1)
AZ - eq = T .
W(Z) = W(AZ) + In—— bAI=bO -, T bAZ)
b(AZ) - b(0) 7. DOAZ D h0)

b(AZ)—b(0)

UN MODELE DE TRANSFERT DE CHALEUR DANS LES LITS FLUIDISES GAZEUX

Résumé—On discute du mécanisme du transfert thermique aux surfaces dans des lits fluidisés et on
développe une variante de la théorie de pénétration dans laquelle la théorie du transfert de chaleur
est modifiée pour tenir compte et décrire quantitativement des variations de propriétés dans la région
proche de la surface.

Les variations de propriétés sont décrites en fonction des variations du taux de vide, au voisinage d’'une
surface contraignante, qui sont modélisées a partir de simples considérations géométriques.

Le modéle du processus de transfert thermique établi ici, montre un bon accord avec les données
expérimentales, sans recours 4 aucune approximation semi-empirique comme rencontrée généralement

dans les modéles antérieurs.

EIN MODELL FUR DEN WARMEUBERGANG IN GASFLIESSBETTEN

Zusammenfassung —Der Wirmeiibergangsmechanismus an der Oberfliiche von FlieBbetten wird diskutiert
und eine Variante der Penetrationstheorie entwickelt, in der die Festbettheorie fiir den Wiirmeiibergang
modifiziert wird, um die Beschreibung von Eigenschaftsvariationen der Packung in der Region der
Oberfliche zu erméglichen und quantitativ zu erfassen. Die Eigenschaftsvariationen werden in Termen
der Liickenvariationen in der Nihe einer erzwungenen Oberfliche beschrieben, die aus einfachen
geometrischen Betrachtungen gewonnen werden.

Das hier entwickelte Wirmeiibergangsmodell zeigt gute Ubereinstimmung mit experimentellen Daten

ohne Bezugnahme auf halb-empirische Nitherungen, die Merkmal fritherer Modelle sind.

MOJEJNb TEMJIOOBMEHA B MCEBAOOXWMMXEHHLIX FAZAMHU CJI0AX

Annotauns — OOcyxaaeTcss MeXaHHW3M Tennoo0MeHa Ha MOBEPXHOCTH, OMBIBAEMOi TICEBAOOXKH-
KEHHBIM CJI0EM, M MPEATAraeTCs BAPUAHT TEOPUU CIIPOHUKHOBEHHUSI», B KOTOPO#l MAKETHAs TEOPHUS
TenoobmMeHa MOAUMUUAPOBAHA A Y4eTa W KOIMHECTBEHHOTO OITMCAHUS W3MEHEH U CBOMCTB nakeTa
BOJIM3U TOBEPXHOCTH.

N3menerHnsa cBOMCTB ONUCHIBAOTCA Ye€pPe3 M3MEHEHHE MOPO3ZHOCTH C10S BOIHW3U OMbIBAEMON UM
MOBEPXHOCTH, MPHYEM HCHOIBL30BAHb! ITPOCTbIE FEOMETPHYECKHE COOBPaKEHUS.

INpeanaraemas Moaeiib TEMIOMNEPEHOCA XOPOLLO COTJIACYETCA C FKCIEPUMEHTATLHBIMM JAHHLIMY,

He Tpebysl HUKAKUX MOTYIMIMUPHUYECKUX MPHBINKEHNH XapaKTEPHbIX AMA MPEXHUX MoIenei.



