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Abstract-The mechanism of heat transfer at surfaces in fluidized beds is discussed and a variant of the 
penetration theory is developed in which the packet theory of heat transfer is modified to allow for, 
and describe quantitatively, property variations in the packet in the region of the surface. 

Property variations are described in terms of the voidage variations in the vicinity of a constraining 
surface which are modelled from simple geometrical considerations. 

The model of the heat-transfer process derived here shows good agreement with experimental data 
without recourse to any of the semi-empirical approximations that are features of the previous models. 

NOMENCLATURE 

43, bed cross-sectional area; 

A(x), cross-sectional area of solid particles at 
point x ; 

b eq, equivalent dimensionless conductivity; 
b(Z), function defined by equation (11); 

CP, specific heat; 

cp (x), specific heat of emulsion phase at point x ; 

C, constant of proportionality; 

;* 

particle diameter; 
surface heat flux; 

fn(x), function of x; 

Fo, ICY t/d;, instantaneous Fourier number; 

Fo,, K~T/~;, time-mean Fourier number; 
g(Z), function defined by equation (10); 

h, heat-transfer coefficient; 
H(Z), function defined by equation (12); 

k, thermal conductivity; 
k(x), thermal conductivity of emulsion phase at 

point x; 

49 heat penetration depth; 
L(Z), function defined by equation (13); 

Nu, hddk,, particle Nusselt number; 

4 contact time; 

T, emulsion phase temperature; 

V, volume; 

V(x), volume of the particle segment-equation 

(23); 
w, dimensionless temperature defined by 

equation (7); 
W(Z), dimensionless emulsion phase temperature 

at point Z ; 

*Present address: Central Electricity Research Labora- 
tories, Kelvin Avenue, Leatherhead, Surrey, England. 

X, distance from the surface; 

Z x/d,, dimensionless distance from the 

surface; 

AZ, step size. 

Greek symbols 

;;X)? 

solid concentration; 
solid concentration in emulsion phase at 

point x; 

E, voidage; 

E(X), voidage of emulsion phase at point x ; 

K, thermal diffusivity; 

P> specific density; 

P(X)? specific density of emulsion phase at point x ; 
r. mean packet residence time. 

Subscripts 

B, uninfluenced by the constraining surface; 

ci, gas; 

1, instantaneous value at time t ; 
m, time-mean value; 

P, particle; 

w, wall, heat-transfer surface. 

INTRODUCTION 

ALTHOUGH many investigations of heat transfer 
between fluidized beds and immersed surfaces have 
been carried out, the designer of fluidized bed heat- 

transfer systems must still resort to approximate 
empirical equations in order to estimate the coefficient 
ofheat transfer. Measurements of heat transfer between 

fluidized beds and boundary surfaces have been carried 
out by many investigators and extensive experimental 
data are available in the literature. 
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A number of mathematical models have been pro- 
posed for the prediction of heat-transfer coefficients, 
the most useful type being based upon transient con- 

duction between the particles and the surface. 
None of the models give agreement with experi- 

mental data, even under closely controlled residence 

time conditions unless some empiricism is invoked, 
although when coupled with empirical equations, most 
models ant capable of fitting data gathered under wide 

ranges of conditions. The model proposed in this paper 
has the advantage over the previous models that it can 
tit most of the available controlled residence time data 

without any (I posferiori empirical constant being used. 
Nowadays, when considering the mathematical 

models, two basic philosophies can be discerned. Both 
methods use a two-phase description of the system 
but for each approach the characteristics and the 
function of the phases are different. 

The first approach is to regard the bed as a 
fundamental system consisting of a continuous phase 

(provided by the fluidizing medium) and a discrete 

phase which is provided by the solid particles and 
sets out to solve the transient heat-transfer equations 
for single particles during their residence at the surface. 

The second approach uses the analogy between a 
fluidized bed and a liquid. so considers the emulsion 

phase to be the continuous phase and the gas bubbles 
to be the discrete phase. The transient conduction 
equations are solved for a packet of emulsion swept up 
to the wall by the bubbles, a stirrer, or by flowing 

the particles over the surface. Each of these approaches 
has some inherent advantages over the other. 

BASIC MODELS, THEIR LIMITATIONS, 
REFINEMENTS AND EXTENSION 

Sing/r purticle modrls 
The simplest model based on this approach was 

developed by Botterill and Williams [ 11, who assumed 
that an isolated particle surrounded by gas contacts the 
heat-transfer surface for a certain time, during which the 
heat is transferred to it by transient conduction. The 
solution was necessarily numerical and the experi- 
mental data, gathered from closely controlled residence 
time experiments, deviated greatly from the prediction. 
This shortcoming was removed by the expedient of 
introducing a gas film between the particle and the 

surface. With this adjustment good agreement between 
predicted and experimental data was possible for short 
particle residence times. This is the major limitation 
on the use of this type of model, although, even if the 
position and residence time of a particle near the 
surface were known precisely, there are still mathe- 
matical limitations in the basic model. The model will 
be accurate only if the heat from the heat-transfer 
surface does not penetrate beyond the first layer of 

particles. The depth of heat penetration is given in 
reference [2] : 

L, K (K” f)“Z 

:. $2c (Fop2 
P 

where K~ is the thermal diffusivity of the emulsion. 

Thus, the single particle approach can be expected to 

be accurate at low Fourier numbers only. This limita- 
tion has been long recognized, and Botterill and Butt 

[3] and Gabor [4] have solved the heat diffusion 
equations for additional layers of particles. However. 
the mathematical modelling of single layers of particles 
has limitations and it is doubtful if the extension of the 
domain to further layers can be justified physically. 

Emulsion phase models 
Themodels based upon the liquid analogy stem from 

the work of Mickley and Fairbanks [5]. They consider 

a packet of constant voidage emulsion phase to be 
swept into contact with the heat-transfer surface for a 
period of time. During this time, known as the packet 
residence time, the heat is transferred by non-steady 

conduction at the surface until the packet is replaced 
by a fresh packet. Even assuming that all of the 

thermophysical properties of the packet can be deter- 

mined accurately, the model still has limitations. Thus, 
at the heat transfer surface the packet properties must 
differ from those in the bed due to the voidage 
variation. For the surface layer effect to be negligible, 
the heat penetration depth must be much greater than 
the layer of altered thermophysical properties. which is 

usually of order one particle diameter. This model 
should be accurate for large values of the Fourier 
number. At small values, however, the model fails. 

Models based on this penetration theory approach 

have been considerably refined to extend their validity 
to low Fourier numbers. The methods used are to 
introduce a time-independent contact resistance at the 

bed-surface interface to account for the increased 
voidage in the vicinity of the surface [6], or to consider 

the packet to have a limited depth (so setting a 
boundary constraint) [7]. 

The concept of a time independent contact resistance 

appears to be a good first approximation to the problem 
as it enables good curve fitting of the available data [8]. 
However, the physical reasoning behind it is somewhat 
tenuous and its introduction the result of mathematical 
expedience [4]. Theevaluation ofthis contact resistance 
is based upon empirical considerations which enable a 
good data-fit to be obtained. 

In conclusion, each of the basic approaches has 
limitations; the former approach being reasonable at 
low values of the Fourier number, the latter at large 
values. Extensions of these asymptotic solutions rely 
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upon empirical considerations which somewhat reduce 
their theoretical validities. The model developed here 
uses the penetration theory on the emulsion phase with 

a modification to allow for variable properties in the 

region of the surface by introducing the concept of a 
property boundary layer. 

PROPOSED MODEL FOR SURFACE TO BED 
HEAT TRANSFER 

Assumptions in the theoretical treatment 
The assumptions are similar to those introduced 

by Mickley and Fairbanks [5] : 

6) 

(ii) 

(iii) 

(iv) 

The dense phase has a constant voidage and is 
isothermal in the bulk of the bed. 
Packets of dense phase are transferred to the heat- 
transfer surface either by bubble induced circula- 
tion, stirring or flowing of the solids. The 
heat-transfer mechanism is one of transient 

conduction during the time of packet residence 

at the surface. 
The only constraint on the position of particles at 
the surface is provided by the surface itself [9], 

which influences the local packing and hence alters 
the local thermophysical properties. 
The variation of voidage is confined to the plane 

normal to the wall. 

Formulation of the model 
Considering the heat transfer to be in the direction 

normal to the wall in the emulsion phase, the semi- 
infinite layer approximation can be applied and the 

Fourier equation takes the form: 

. 
With boundary conditions for t > 0, x > 0: 

t>O,x=O -k(x) ‘;=L 

t=O,x>O T=O. (3) 

These equations can be written in dimensionless form 

dW 
z = H(Z)% + L(Z): (4) 

subject to 

Fo>,O,Z=O g= -l/b(Z) (5) 

Fo=O,Z>O W=O 

by using the following transformations: 

W = %lLd, 

Z = x/d, 

(6) 

(7) 

(8) 

Fo = K~ t/d; 

g(Z) = P(Z)C, (Z)/(PCP)B 

b(Z) = k(Z)lk, 

H(Z) = b(Z)/g(Z) 

(9) 

(10) 

(11) 

(12) 

L(Z) = t!!@ 
dZ 

g(Z). (13) 

In order to solve equations (4))(6) the functions defined 
in (lo)-(13) must be evaluated. These evaluations 

require a knowledge of the voidage variation in the 
vicinity of the surface. 

Voidage variation in the vicinity of a constraining surface 
The variation of local voidage of packed beds in the 

vicinity of a constraining wall has been investigated by 
several workers [9-111. Using spherical particles the 
usual observation is that the voidage variations with 
distance from the constraining surface take the form of a 

damped oscillation curve, having a minimum voidage 
at about one particle radius from the surface. In the 
case of fluidized beds the oscillations of the voidage 

appear to be damped much more rapidly [ 1 l] and the 
voidage minimum is shifted further from the constrain- 
ing surface. This situation is further exaggerated for 

non-spherical particles, the voidage remaining practi- 
cally constant after one particle diameter and having a 

minimum at 0.75 d, from the surface. 

Particles at the same distance from the constraining 
surface will be influenced by it in the same way. 

Hence, the mean voidage of any plane parallel to the 
constraining surface is a function of the distance of the 
plane from the constraining surface. The area voidage 

of these planes is 

E(X) = 1 -B(X) (14) 

where /I(x), the solid concentration is given by 

B(x) = $9. (15) 

A(x) is the solid cross-sectional area at a reference 
plane which is situated at a distance x from the 
constraining surface. In order to calculate the particle 
cross-sectional area at any distance the following 
assumption is made. 

The particles in the bed can be approximated by 
uniform spherical particles having the mean equivalent 
diameter of the actual particles without affecting the 
voidage distribution within the packet. 

It is now postulated that for a bed of uniform 
spherical particles, the solid cross-sectional area A(x) 

at a reference plane distance x from the surface is 
proportional to the cross-sectional area of a cylinder 
whose volume and height are identical to those of the 
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segment of a spherical particle which can be found 
between the reference plane and the surface while 

touching the surface (Fig. 4). 
When the reference plane is situated beyond one 

particle diameter from the surface, the fraction of a 

spherical particle in contact with the surface which 
can be found between it and the surface is constant, 
and equal to the entire particle. Thus, it is implied that 

the asymptotic material cross-section is attained at a 
distance of one particle diameter from the wall. The 
voidage variation can then be calculated 

.X < d, A(x) x V(x)/x (16) 

.Y > d, A(x) sx &id, (17) 

where V(x) is the volume of that segment of a spherical 

particle between the surface and the reference plane and 
VP is the particle volume. 

Equations (16) and (17) can be rewritten 

x Q d, /l(x) = CV(x)/.u (18) 

.x > dp b(x) = CV,ld, (19) 

where C is a constant of proportionality. The r.h.s. of 

equation (19) is a constant uninfluenced by the con- 
straining surface equal to the material concentration 
within the emulsion phase, PH. Hence 

C&/d, = 1 -&g = fls. (20) 

Then from equations (18) and (19) 

x<d, fi(x)=(l-z,)$F (21) 
P 

x > d, /l(x) = 1 -cB (22) 

where V(x), the volume of the segment between the 
surface and the plane, is given by: 

V(x) = +x’(:d,-x). (23) 

Equations (21) and (22) can be written in dimension- 

less form : 

z < 1 c(Z) = l-3(1 -&J(Z-$ZZ) (24) 

z > 1 E(Z) = Em (25) 

The predicted variation of the voidage for various 
emulsion voidages, Q,, is plotted in Fig. 1. These 
predictions agree well with the experimental data of 
[9] and [l 11. 

Equations (24) and (25) can be used to calculate the 
variables H(Z) and L(Z). 

7hejimctions H(Z) und L(Z) 
(i) When the fluidizing medium is a gas, its heat 

capacity can be neglected relative to that of the 
solids so that 

THEORETICAL HEAT-TRANSFER COEFFICIENTS 

P(Z)C,(Z) = (PC,), B(Z) (26) . .- 

Numericul calculations 

Equations (4)-(6) were solved numerically using the 
voidage distribution given by equations (24) and (25). 
The calculated thermophysical properties vary very 
rapidly close to the heat-transfer surface which type 

FIG 1. Variation of the dense phase voidage in the viciruty 
of a flat surface. 

and 

and hence 

(PC,), = (PC,), BH (27) 

(ii) 

g(Z) = B(Z)/& (28) 

The effective conductivity of a packet can be 
calculated from one of the models available in the 
literature. In this work the method proposed by 
Kunii and Smith [12] is used and it is assumed 
that its validity can be extended into regions of 
high voidage [13]. The local effective thermal 

conductivity of a packet can be expressed in the 
form : 

(iii) 

k(Z) =,fn[k,, kc;, E(Z)]. (29) 

Using equations (29) and (1 l), b(Z) can be readily 

calculated. However, k(Z) can be more easily 
evaluated graphically than using its explicit form 
[12]. Figures 2 and 3 show the behaviour of 
function b(Z) for various ratios of gas and particles 
thermoconductivities and two values of the mean 

packet voidage, Q. 
The function H(Z) is then calculated from equa- 
tion (12). In order to calculate the function L(Z), 
b(Z) must be differentiated, in this work by 
numerical differentiation. L(Z) is then calculated 
from equation (13). 
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FIG. 2. Variation of the dimensionless conductivity, h(Z), 
with Z for dense phase voidage t:H = 0.40. 

FIG. 3. Variation of the dimensionless conductivity, h(Z), 
with Z for dense phase voidage cB = 050. 

of variation lends itself most readily to constant flux 
boundary conditions. The physical situation is some- 
where between constant wall temperature and constant 
wall flux. However, the solutions obtained by either 

approach are almost the same [2]. In order to solve 
the equations accurately, very small space (and hence 

time) increments must be used because of these large 
variations close to the surface. The size of increments 
needed makes computer time requirements extremely 
large. 

In order to overcome this complication while not 
sacrificing much accuracy, it was assumed that the first 
space increment from the surface remained at steady 
state so that the situation is as shown in Fig. 4 and 
the wall temperature, W(O), can then be calculated as 
shown in the Appendix, from, 

W, = W(0) = @‘(AZ) + 2 (30) 
W 

FIG. 4. Considerations for deriving b,,, 
used in the numerical calculation. 

where, 

b = &AZ)-b(O). 
=I 

b(AZ) 
(31) 

The temperature field in the packet was calculated by a 
standard numerical technique [2] until that distance 
from the surface at which the dimensionless tempera- 
ture, W, became smaller than IO-“; at this point the 
calculation was terminated and restarted for the next 

time increment. The space incremental size used was 
AZ equals 0.05. The solution thus obtained was checked 
for accuracy by halving and quartering the step-size. 

This demonstrated both the adequacy of the step-size 
and that thesimplification [equations(30) and (31)] was 
numerically reasonable, leading to a great saving in 
computer time while incurring negligible loss of 

accuracy. 

The iwtantaneous Nusselt number 
An instantaneous Nusselt number can be defined as 

Nui = hid, 
k, 

(32) 

where hi is the instantaneous heat-transfer coefficient 
which can be expressed, 

h,=- 
’ (Tih 

(33) 
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FIG. 5. Instantaneous Nusselt number, Nui, as a function of the instantaneous Fourier 
number, Fo. Voidage of the dense phase is taken as E* = 0.41. 

so that. 

4Jf, 
Nui = k,(T,),’ 

Thus, from equation (7), 

1 
Nui = (~,)i’ (35) 

Figure 5 shows the variation of the instantaneous 

Nusselt number with the Fourier number. 

Time-mean Nusselt number 
The time-mean heat-transfer coefficient (and hence 

time-mean Nusselt number) can be calculated if the 
mean residence time and the residence time distribution 
functions are known. Thus, 

fi 
hm=(T,),. 

In order to evaluate (T,), a residence time distribution 
function must be used. The simplest form for fluidized 
beds appears to be the uniform residence time 

distribution function [6,7] although many other forms 
can be used [14,15]. The effect of the distribution 
function selected is not numerically large [7,19], SO that 

(Tw)m = 5 
s 

i (Tw)i dt (37) 

where 5 is the periodic time of renewal of packets on 
the heat-transfer surface. The mean Nusselt number is 

(38) 

where 

The theoretical predictions can be compared with 
experimental results obtained under closely controlled 
conditions such as in flowing or in stirred beds. 

Figure 6 shows the variation of the time-mean Nusselt 
number with the time-mean Fourier number. 

COMPARISON WITH EXPERIMENTAL DATA 

The discrepancies amongst the available data, 

measured in freely bubbling beds under apparently 
identical conditions of fluidization, can be of several 

orders of magnitude [16], reflecting the many para- 
meters which can influence fluidized bed heat-transfer 
rates. Hence, in order to test the various theories or 
develop new models, simplified systems in which the 
bed behaviour is closely controlled are used. The 
experimental systems can be classified as follows : 

(i) The low thermal capacity probe 
In this technique a small, low heat capacity heating 

foil is used to measure both heat-transfer coefficients 

and packet residence times in freely bubbling beds [17]. 
While this technique is very useful, the results obtained 

are subject to errors because the surface temperature 
and flux vary during any test and further. the packet 
voidage at the surface is distorted by the passing 

bubbles. 

(ii) Stirred beds 
The heat-transfer probe is moved through the bed 

on a stirrer [18] or the bed is stirred past a heat- 
transfer probe [l] in order to effect residence time 
control. However, this technique involves two question- 
ableassumptions. Firstly, particle replacement over the 
entire surface is complete and setiondly, the bed 
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FIN. 6. Time-mean Nusselt number, Nu,, as a function of the time-mean Fourier 
number, Fo,. Voidage of the dense phase is taken as Ed = 0.41. 

structure is unaffected by the stirring. Each of these 
assumptions has been shown to be of limited validity 

r_41. - 

(iii) Flowing pucked beds 
According to the two-phase theory of fluidization the 

dense phase of a lluidized bed is considered to be 
under approximately incipiently fluidized conditions. 
The incipiently fluidized bed has many of the charac- 

teristics of a packed bed [20] so that the dense 
phase can be simulated for many purposes by a packed 
bed. Many data have been gathered for packed beds 

flowing over heat-transfer surfaces. The main experi- 
mental limitation of this technique is that particle 
rotation has been observed under some conditions [21]. 

(iv) Transient response 
In this technique a heat-transfer probe of known 

heat capacity and initial temperature is submerged into 
an incipiently fluidized or packed bed [22]. The 
variation of heat-transfer coefficient with time, obtained 

from the temperature response of the probe, is ana- 
logous to the response of a packet of particles at a 
heat-transfer surface in a fluidized bed over the same 
time interval. This technique suffers from the same 
disadvantage as the first method in that both flux and 
temperature vary at the surface. However, the packing 
at the surface is not in this case disturbed by passing 
bubbles. 

Experimental data, obtained under all of the above 

these data with the prediction of this work it was 

sometimes necessary to use assumed values for the 
dense phase voidage to calculate the required packet 

properties. The voidage then used was 0.41 and the 
conductivity was calculated as outlined earlier. The 
properties of the particles and gases used in this 

comparison are set out in Table 1. 

Table 1. Physical properties at 24°C 

Air 0.026 1008 1.19 
Helium 0.148 5200 0.165 

Freon 12 0.0097 650 5.14 

COZ 0.016 850 1.79 

Glass 0.850 765 2700 

Copper 380 385 8930 

Steel 45 480 7800 
Silica sand 1.87 860 2600 
Slag [18] 0.59 752 2720 

Instantaneous Nusselt numbers 
The prediction of the present theory is compared 

with the results of Antonishin et al. [22] in Fig. 7. 

The asymptotic Mickley-Fairbanks solution, assuming 
a constant flux boundary condition, and given by 
Carslaw and Jaeger [2] as 

Jn Nui = 2Fo- 1’2 (40) 

conditions are available in the literature. In comparing is also included. 
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FIG. 7. Comparison of experimental data with present theory 
for instantaneous heat transfer in the system glass ballotiniL 

air. (Experimental data of Antonishin et al. [22].) 

Time-meal1 Nusselt numbers 

The experimental results of a number of workers are 

compared with the present theory in Figs. 8-l 1. Again, 

the Mickley-Fairbanks solutions calculated from equa- 
tions (36), (37) and (40) as 

3J" NM, = TF~;“2 

are included. 

DKCUSSION 

(41) 

As the present model involves the use of the experi- 
mental results of several workers, for example in 

calculating voidage variations near surfaces or packet 
properties, it is very satisfying to see the very good 
agreement between the present theory and the 
controlled residence time data available in the litera- 
ture. It is significant that the best agreement between 
theory and experiment was obtained using the results 

from experiments conducted under very carefully con- 
trolled conditions with materials of well known pro- 
perties in the emulsion phase. This suggests that where 
the disagreement is most pronounced, the true experi- 
mental conditions may not have been measured. These 
errors may be due to: 

(9 
(ii) 

(iii) 

(iv) 

The stirrer not being 100 per cent efficient. 
In flowing packed bed experiments some particle 

rotation could occur. 
The voidage was not reported for many of the 

experiments and the value of 0.41 may not be 
correct. 
The calculated thermal conductivities of packets 
is probably the biggest single source of error. This 
error is indicated when the results of a particular 
study fall systematically either above or below the 

5 
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FIG. 8. Comparison ofexperimental data with present theory 
for time-mean heat transfer in the system copper shot-air. 
(Experimental dataofButt [26], 0; Hampshire [24], a; and 

Desai [27], 0.) 
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FIG. 9. Comparison of experimental data with present theory 
for time-mean heat transfer in the system glass ballotini-air. 
(Experimental data of Harakas and Beatty [28], 0 ; Williams 
and Smith [29], -O-; Hampshire [24], 9; Butt [26], 0; 

and Cain [25], 0.) 
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FIG. 10. Comparison of experimental data with present 
theory for time-mean heat transfer in the system steel shot- 
air. (Experimental data of Butt [26], 0; and Hampshire __ ._ - 

LL4J, W.) theoretical line. 
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FIG. 11. Comparison of experimental data with present theory for time-mean heat transfer in the following 
systems: & copper shot-helium [24]; A, copper shot-carbon dioxide [27]; V, glass ballotini-helium [24]; 
V, glass ballotini-helium [28]; 0, glass ballotini-carbon dioxide [25]; 0, steel shot-helium [24]; 0. quartz 

sand-air [30]; H, slag spheres-air [18]. 

(v) In the case of fluidized metals a further complica- 
tion is that an oxidized microlayer on the surface 
of the particle would considerably effect the con- 
ductivity of a packet. 

These effects could be eliminated by calculating the 
effective conductivity of the emulsion phase from heat- 
transfer results with long packet residence times, using 
Mickley and Fairbanks asymptotic solution. However, 
the agreement obtained without using this method 
seems to make such a refinement unnecessary. 

None of the previous models of heat transfer in 
fluidized beds have been capable of producing accept- 
able agreement with the experimental data over the full 
range of data without the introduction of some form 
of semi-empirical approximation. While these approxi- 
mations, such as a gas-film, a region of reduced 
voidage or a finite penetration depth, have obvious 
physical significance, they are all ad hoc expedients 
rather than solutions to the real problem of behaviour 
close to a surface. The model developed here uses no 
assumed film properties and is analogous to the 
variable wall properties approach long used in single 
phase heat transfer, such as the Seder-Tate correction 
for viscosity variations [23]. 

Voidage variations are confined to a distance of one 
particle diameter from the surface and can be described 
accurately from simple geometrical considerations. 

Figures 7-11 show that the model developed here 
gives a good agreement with experimental data where 
conduction is the predominant mode of heat transfer. 
In principal, this model could be extended to more 
complicated mixed-mode heat-transfer situations, for 
example to high pressure systems where gas convective 
transfer is significant [21]. 

The voidage variation in the vicinity of a surface 

could probably be described by a more accurate 
expression than that developed here and the numerical 
approximation improved. However, it is doubtful 
whether the increase in precision of the theoretical 
solution would be justified in terms of the experi- 
mental limitations. 

The main disadvantage of all of these theoretical 
models is that they cannot be readily applied to freely 
bubbling beds where the actual dense phase motion 
cannot yet be described adequately in any quantitative 
manner. 

CONCLUSIONS 

The model derived here for heat transfer between 
a surface and a fluidized bed agrees well with all 
controlled residence time data available in the 
literature. 
The packet theory of heat transfer is modified to take 
account of the presence of the surface and its effect 
on the local voidage by introducing a physically 
justified property boundary layer. 
The voidage variation near a surface can be 
described from simple geometrical considerations, 
and the equation derived agrees well with the 
available data. 
The model proposed, using the derived property 
boundary layer, requires no physically unjustified 
concepts in order to produce agreement with experi- 
mental data. 
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APPENDIX 

Constant flux conditions at the surface of the heat-transfer 
probe are given by equation (5) as 

?W 
- = - l/h(O). 
c7Z 

(A.11 

Equation (A.l) is valid only at the suiface of the heat-transfer 
probe. If a finite difference numerical method is used with a 
finite material slab, equation (A.l) is not applicable and 
must be modified to 

FW 

z= 
- Ub,, (A.3 

where beq is the equivalent thermal conductivity (dimension- 
less) of the first slab (Fig. 4). 

The temperature at the wall can be calculated from the 
temperature at point AZ as [2] 

W(0) = F + W(AZ). (A.3) 
eq 

Equation (A.3) is based on the assumption that the first slab 
of material remains at steady state throughout the heating 
process. The same assumption can be applied on a material 
slab of variable conductivity. This is done by solving 

subject to 

z=o -b(O);;= 1 

Z = AZ W = W(AZ). (A.6) 

It is further assumed that, because the slab thickness is small 
compared with the particle diameter, the variation of dimen- 
sionless thermal conductivity can be approximated by a 
linear function satisfying the following conditions 

Z = 0 b(Z) = b(0) (A.7) 

Z = AZ b(Z) = b(AZ). (A.8) 
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The function b(Z) can then be approximated in the first from which the wall temperature W(0) can be calculated as 
slab by 

b(Z) = b(0) + “(““,‘, b(o)Z. (A.9) W(0) = W(AZ) + 
AZ . ,n b(*Z) 

b(AZ) - b(0) b(O)’ 
(A.ll) 

The solution of equation (A.4) with b(Z) given by equation Finally, comparing equations (A.3) and (A. 11) the expression 

(A.9) is for the equivalent conductivity of the first stab is given as 

Az + WMZ 

W(Z) = W(AZ) + 
AZ 

In 
b(AZ) - b(0) 

b(AZ) - b(0) b(O)AZ 
(A.lO) 

’ + b(AZ) - b(0) 

b 

=l 
= bW)-b(O) 

,n WZ) 
b(O) 

UN MODELE DE TRANSFERT DE CHALEUR DANS LES LITS FLLJIDISES GAZEUX 

Resume-On discute du mecanisme du transfert thermique aux surfaces dans des lits fluidises et on 
developpe une variante de la thiorie de penetration dans laquelle la thtorie du transfert de chaleur 
est modifite pour tenir compte et d&ire quantitativement des variations de proprietts dans la region 
proche de la surface. 

Les variations de prop&t&s sont d&rites en fonction des variations du taux de vide, au voisinage dune 
surface contraignante, qui sont modelisees a partir de simples considerations geomttriques. 

Le modele du processus de transfert thermique etabli ici, montre un bon accord avec les donnees 
experimentales, sans recours a aucune approximation semi-empirique comme rencontree genbalement 

dans les modtles anterieurs. 

EIN MODELL FUR DEN WARMEtiBERGANG IN GASFLIESSBETTEN 

Zmammenfasaung-Der Warmekbergangsmechanismus an der Oberflache von Fliegbetten wird diskutiert 
und eine Variante der Penetrationstheorie entwickelt, in der die Festbettheorie fir den Warmetibergang 
modifiziert wird, urn die Beschreibung von Eigenschaftsvariationen der Packung in der Region der 
Oberflache zu ermoglichen und quantitativ zu erfassen. Die Eigenschaftsvariationen werden in Termen 
der Liickenvariationen in der NIhe einer erzwungenen Oberflache beschrieben, die aus einfachen 
geometrischen Betrachtungen gewonnen werden. 

Das hier entwickelte Warmeiibergangsmodell zeigt gute tibereinstimmung mit experimentellen Daten 
ohne Bezugnahme auf halb-empirische Nlherungen, die Merkmal frtiherer Modelle sind. 

MOLlEJlb TEFUlOO6MEHA B flCEBAOOW4~EHHblX rA3AMM CJlOIlX 

Atmorautm - 06cymnaercn MeXaHM3M TemOO6MeHa Ha IlOBepXHOCTct, OMblBaeMOl? IlCeB11OOYll- 

KeHHblM CnOeM, M npeRnaraeTCfl BapMaHT TeOpMll WIpOHMKHOBeHHR)), Li KOTOpOR IIaKeTHaR TeOpm 

‘rennoo6%reua ~4onm$r4uriposatra nna yqera u KonwLiecTBeHHoro omcaHw4 t43MeHeHm csoircm naKeTa 

n6nusi-i rroBepxHocT!-i. 

M3MeHeHMR Cl3OtiCTB OnHCblBakOTCR Yepe3 MSMeHeHHe nOpO3HOCTLl CnOR a6nusu OMblBaeMOi? MM 

nOBepXHOCTl4. IlpMqeM MCnOnb30BaHbl IIpOCTble reOMeTpWeCKHe coo6pa~eHm. 

flpennaraesran Monenb rennonepeuoca xopomo cornacyercs c 3Kcnept4MeriranbubtMu namibtbru, 
He Tpe6yn HMKaKMX nony3MnMpMYeCKMX npH6mmetmit’i XapaKTepHbrx nnn npexHkix MOneneti. 

(A.12) 


